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a b s t r a c t

The present investigation deals with a mathematical model representing the dynamic response of heat
and mass transfer to blood streaming through the arteries under stenotic condition. The blood is treated
to be a generalized Newtonian fluid and the arterial wall is considered to be rigid having differently
shaped stenoses in its lumen arising from various types of abnormal growth or plaque formation. The
nonlinear unsteady pulsatile flow phenomenon unaffected by the concentration-field of the macromole-
cules is governed by the Navier–Stokes equations together with the equation of continuity while those of
the heat and the mass transfers are controlled by the heat conduction and the convection–diffusion equa-
tions, respectively. The governing equations of motion accompanied by the appropriate choice of the
boundary conditions are solved numerically by Marker and Cell (MAC) method in order to compute
the physiologically significant quantities with desired degree of accuracy. The necessary checking for
numerical stability has been incorporated in the algorithm for better precision of the results computed.
The quantitative analysis carried out finally includes the respective profiles of the flow-field, the temper-
ature and the mass concentration along with their individual distributions over the entire arterial seg-
ment as well. The key factors like the wall shear stress and the Sherwood number are also examined
for further qualitative insight into the heat flow and mass transport phenomena through arterial stenosis.
The present results show quite consistency with several existing results in the literature which substan-
tiate sufficiently to validate the applicability of the model under consideration.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is an well established fact that atherosclerosis, a kind of arte-
rial disease leading to the malfunction of the cardiovascular sys-
tem, involves a distinctive accumulation of low-density
lipoprotein and other lipid bearing materials in large and med-
ium-size arteries [1]. Such abnormal accumulation implies that
the transport of low-density lipoproteins from blood into the arte-
rial walls must play key role in the development of atherosclerotic
lesions, which are usually detected at specific locations in the arte-
rial system, particularly near the bends, bifurcations and some
other regions identified by complicated flow patterns of the
streaming blood [2]. Hemodynamics has long been suspected of
being involved atherosclerotic lesions causing the normal flow dis-
turbances around those specific sites where plaques are frequently
formed. Beside this, in order to alleviate the heat sink effect of large
vessels, considerable attention has also been focused on reducing
blood flow by either pharmacologic agent [3] or by occluding arte-
rial inflow [4] as a measure of ablative therapies for treatment of
abnormal and undesirable growth in vascular lumen. It is well
ll rights reserved.
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known that large blood vessels perturb the induced temperature
distributions in physiological situations. The understandings of
the magnitude of the perturbation of the temperature distribution
as a function of the vessel diameter and temperature gradient are
critical to the development of appropriate models of bioheat
transport.

Although it has been found that low and oscillatory wall shear
stresses are often positively correlated to localised intimal thicken-
ing of the arterial wall [5,6], but the relationship between wall
shear stress and atherosclerotic development is yet to be under-
stood as characterized in [7]. There are views that the correlation
between wall shear stress and atherosclerosis in some arteries
[8,9] can not always be convincingly established, which suggest
that wall shear stress may not be the only responsible mechanism
that promotes the formation of atherosclerotic lesions. Caro et al.
[10,11] postulated that atherosclerosis may occur due to shear-
dependent mass transfer mechanism of cholesterol between blood
and the arterial wall. For the purpose of the appropriate assess-
ment regarding the possible correlation between the sites of ath-
erosclerotic lesions and the patterns of mass transport, accurate
characterization of the behaviour of local mass transport is highly
necessary. Moreover, good understanding of mass transport in
arterial stenoses is of considerable clinical interest in the study
of the formation and development of atherosclerotic lesions. The
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Nomenclature

C dimensionless mass concentration of fluid
Cp specific heat ½J Kg�1 K�1�
Cs reference concentration at the inlet ½n mol=mn3�
D diffusivity ½mm2=s�
k0 thermal conductivity ½J s�1 mm�1 K�1�
L dimensionless length of the arterial segment
p dimensionless fluid pressure
p0 fluid pressure ½N=mm2�
Pr Prandtl number lCP

k0

h i
r dimensionless radial coordinate
r0 dimensional radius of the artery ½mm�
Re Reynolds’ number qU0r0

g1

h i
Sc Schmidt number l

qD

h i
t dimensionless time
T dimensionless temperature
Ti temperature at the inlet ½K�
Tw wall temperature ½K�
u dimensionless radial velocity

U0 cross-sectional average velocity ½mm=s�
w dimensionless axial velocity
z dimensionless axial coordinate
z0 half-length of the stenosis ½mm�
z1 length of the stenosis centre ½mm�

Greek symbols
q density ½g=mm3�
g0 apparent viscosity corresponding to zero shear rate

½g=mm s�
g1 apparent viscosity corresponding to large shear rate

½g=mm s�
k dimensionless viscosity
^ time dependent material constant ½s�
_c shear rate ½s�1�
d maximum width of the stenosis ½mm�
a Womersley number r0

ffiffiffiffiffiffi
xq
l

qh i
x radial frequency ½rad=s�
b upwinding parameter
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presence of stenoses causes flow separation together with complex
hemodynamic features and these, in turn, influence mass trans-
port. Back et al. [12] considered a real specimen having a 2D rep-
resentation of an actual coronary artery as the basis for a
computational model of mass transport and computed oxygen
fluxes to the arterial wall for unsteady flow conditions. They have
shown their interest on the variations of the mass transfer only in
the stenotic regions of the specimen contained several stenoses.
Their findings indicated a strong reduction in oxygen transport
on the rear end of plaques at incipient flow separation zones. An-
other numerical separation of mass transport was carried out by
Ma et al. [13] where the influence of separated flow on luminal
mass transport and the arterial mass transfer coefficient was re-
corded. Subsequently, Rappitsch and Perktold [14] studied numer-
ically the steady convective diffusion processes in an axisymmetric
tube having a local constriction by applying a passive transport law
for the flux at the wall and physiologically realistic values for the
flow and mass transfer parameters.

In the past, there have been quite a good number of studies to
examine heat transfer in blood vessels. Charm et al. [15] experi-
mentally investigated heat transfer in small tubes of diameter
0.6 mm in a water bath while Victor and Shah [16,17] computed
heat transfer in both the cases for uniform heat flux and uniform
wall temperature for fully developed flow and in the entrance
region. The correlation equations for estimating the heat transfer
under different configurations and diameters of blood vessels were
developed by Chato [18]. Based upon the study of laminar and fully
thermally developed flow in large vessels, Lagendijk [19] analysed
temperature distributions in the entrance region around the ves-
sels during hyperthermia. Barozzi and Dumas [20] calculated heat
transfer in the entrance region considering the rheological proper-
ties of the blood stream and a cell-free peripheral plasma layer at
the vessel wall. The use of the consideration of energy equations
was made by Kolios et al. [21] to compute temperature profiles
around large vessels since heat transfer coefficients vary during
temperature variations. Based on the assumptions of constant ves-
sel wall temperature, Tungjitkusolmn et al. [22] simulated the
influence of a large vessel on thermal lesion formation during radio
frequency ablation. Their model was subsequently updated by
Haemmerich et al. [23] who used the estimates of the heat transfer
coefficient to simulate the influence of a large vessel on the forma-
tion of thermal lesion during radio frequency ablation by assuming
fully thermally developed flow. All these studies were concen-
trated only on the heat transfer to blood streaming through the
arteries but disregarded mass transport processes. One possible
reason could have been that the problems dealing with mass trans-
port phenomena are highly convection dominated because of the
low diffusion coefficients of the principal constituents governing
transportation of blood.

However, to the authors’ knowledge there have been some
studies [24–27] concerning both heat and mass transfer in non-
Newtonian fluids where in the most cases the governing flow
was considered to be steady and the effect of non-Newtonian
parameters on the flow-field together with the temperature-field
were mostly recorded. It is commonly believed that the influence
of non-Newtonian property of blood is meagre in larger arteries
where the shear rate is high. The above mentioned studies were
not, however, performed in stenosed arteries although the athero-
sclerotic flow phenomenon is of great clinical interest both with
respect to genesis and the diagnostics of atherosclerosis.

The objective of the present paper is to study the response of
heat and mass transfer of blood flowing through three different
types of constrictions in the unsteady state. The arterial wall is
considered to be rigid having differently shaped constrictions in
its lumen arising from the formation of various types of abnormal
growth or plaque and the streaming blood is treated to be general-
ized Newtonian. The assumption of wall rigidity may not seriously
affect the flow since the development of atherosclerosis in arteries
causes a significant reduction in the distensibility of its wall as evi-
dent from the observation of Nerem [28]. The unsteady nonlinear
Navier–Stokes equations of motion governing blood flow, the heat
flow and the mass transport equations coupled to the velocity-field
are taken up along with the appropriate boundary conditions
including inlet–outlet conditions in order to define the present bio-
mechanical problem. Following the radial coordinate transforma-
tion, all the governing equations, duly non-dimensionalized, are
reduced to a tractable form initially and then they are solved
numerically by MAC method using non-uniform grid for their
finite-difference representations. An extensive quantitative analy-
sis with substantial accuracy has been performed at the end of



Fig. 1. Comparison of three different stenosis models.
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the paper in order to exhibit the patterns of the flow-field, the mass
concentration profile and the temperature profile over the entire
arterial segment. For a more quantitative insight into flow and
mass transport patterns in three different types of stenoses, the
characteristics of the normalised wall shear stress and the Sher-
wood number were examined in detail and the effects of severity
of the stenoses on them were quantified so as to validate the appli-
cability of the present model with reference to the latest findings
in the existing literatures.

2. Mathematical formulation

The streaming blood in the arterial lumen is treated as a general-
ized Newtonian fluid. The Navier–Stokes’ equations and the equation
of continuity that govern the unsteady nonlinear fully developed
swirl-free flow of blood may be written in dimensionless form as
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where r and z are the dimensionless co-ordinates, scaled with re-
spect to r0, with the z-axis located along the symmetry axis of the
artery. As there is no secondary or rotational flow so the total veloc-
ity is defined by the dimensionless radial and axial components, u
and w scaled with respect to the cross-sectional average velocity
U0. The Reynolds number Re, the dimensionless pressure and the
shear-dependent viscosity may be defined as

Re ¼ qU0r0

g1
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qU2
0

;
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in which q is the density of blood, p0 the pressure and the non-
dimensional viscosity parameters k ¼ g0

g1
;^ ! ^U0

r0
with g0 and

g1ðg0 P g1Þ are the asymptotic apparent viscosities as _c! 0 and
1, respectively, and ^P 0 is a material constant with the dimen-
sion of time representing the degree of shear-thinning. This model
reduces to the Newtonian one for g0 ¼ g1 or k ¼ 1 so that lð _cÞ be-
comes constant. The present approximation of a three-parameter
shear-thinning model characterizing the complexity in blood rheol-
ogy indicates that the apparent viscosity as a decreasing function of
the shear rate which increases considerably at low shear rates.

While mass transport refers to the movement of atherogenic
molecules, that is, blood-borne components, such as oxygen and
low-density lipoproteins from flowing blood into the arterial walls
or vice versa, the heat transfer relates to the exchange of heat be-
tween the arterial wall and the streaming blood by means of which
ablative therapies are often applied clinically for treatment of
unnatural growth in the arterial lumen. The heat conduction and
the convection–diffusion equations governing the flow of heat
and mass transport in the blood stream each coupled to the flow
velocity-field are also written in dimensionless form as
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in which the Prandtl number Pr ¼ lCp

k0
, the Schmidt number

Sc ¼ l
qD ;Cp the specific heat, D the coefficient of diffusion, k0 the

thermal conductivity and the non-dimensional parameters signify-
ing the time, the temperature and the concentration are, respec-
tively, scaled as follows:

t ! tUo

ro
; T ! T � Ti

Tw � Ti
; C ! C

Cs
; ð8Þ

where ro is the unconstricted radius of the artery, Cs the reference
concentration at the inlet and Ti; Tw are the respective temperatures
at the inlet and at the wall.

Three differently shaped models of stenosis having 48% areal
occlusion each shown in Fig. 1 have been examined. The first pro-
file of the stenosis considered here is the straight axisymmetric
model of Back et al. [30] mimicing real surface irregularities since
the actual variation of the cross-sectional area of a left circumflex
coronary artery casting from a human cadaver is retained. This ste-
nosis is not symmetric with respect to its narrowest point. The sec-
ond geometrical model of the stenosis undertaken is the most
conventional use of cosine curve, given by

RðzÞ ¼
1� d

2r0
½1þ cosfpðz� z1Þ=z0g�; 7d 6 z 6 dþ 2z0

1; otherwise;

(
ð9Þ

where z0 is the half-length, d, the maximum width and z1 is the centre
of the stenosis with d ¼ 0:276r0. Finally, a new stenosis model is
investigated similar to the irregular stenosis model having no surface
irregularities or roughness elements. Thus this model can be treated
as smooth, but in contrast to the cosine-shaped model, the profile of
stenosis is no longer symmetric about its narrowest point.

3. Boundary conditions

As the arterial wall is treated to be rigid, the velocity boundary
conditions of the blood stream on the wall are the usual no-slip
conditions given by

wðr; z; tÞ ¼ 0 ¼ uðr; z; tÞ on r ¼ RðzÞ; ð10Þ

while zero transverse velocity gradient and zero cross flow on the
axis of symmetry are taken as

@wðr; z; tÞ
@r

¼ 0 ¼ uðr; z; tÞ on r ¼ 0: ð11Þ
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A fully developed pulsatile parabolic velocity profile at the inlet of
the stenosed arterial lumen may be assumed as

wðr;z; tÞ ¼ 1� r2

R2

� �
1þ ksin
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Re
t
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and uðr;z; tÞ ¼ 0 at z¼ 0; ð12Þ

in which a ¼ r0
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xq
l

q
is the Womersley number while the velocity

gradients at the outlet of the arterial segment of finite length L
may be taken to be the traction-free conditions as
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The axial symmetry conditions for the temperature and the
mass concentration are introduced as
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At the inlet, the mass concentration of the solute is assumed to
be constant while the concentration gradient at the outlet may be
assumed to be equal to zero, that is, non-dimensionally,

Cðr; z; tÞ ¼ 1 at z ¼ 0 and
@Cðr; z; tÞ

@z
¼ 0 at z ¼ L ð15Þ

and a Dirichlet boundary condition of the zero-concentration on the
arterial wall is set as

Cðr; z; tÞ ¼ 0 on r ¼ RðzÞ; ð16Þ

which essentially neglects coupling between mass transport in
blood and in the arterial wall, that is, zero-concentration on the wall
is appropriate when the fluid-side mass transport resistance domi-
nates the wall-side resistance as evident from Ethier [31].

Moreover, the temperature is assumed to be equal to zero at the
inlet and a constant temperature is set on the arterial wall so that
their non-dimensional representations are, respectively, given by

Tðr; z; tÞ ¼ 0 at z ¼ 0 and Tðr; z; tÞ ¼ 1 on r ¼ RðzÞ: ð17Þ
4. Radial coordinate transformation

For the purpose of avoiding interpolation error while discretiz-
ing the governing equations, we use a suitable coordinate transfor-
mation to map the constricted domain into a rectangular one. Eqs.
1, 2 and 3 and 5, 6 and 7 together with the boundary conditions
(10)–(17) are transformed by the introduction of a new variable
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while the transformed boundary conditions are listed below
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5. The MAC methodology

The above governing equations along with the set of initial and
boundary conditions including the non-zero initial conditions are
solved numerically by finite-difference method with non-uniform
grid in both the axial and the radial directions. Control volume-
based finite-difference discretization of those equations is carried
out in staggered grid. In this type of grid alignment, the flow veloc-
ity-field and the pressure are calculated at different locations of the
control volume as indicated in Fig. 2 while the difference equations
have been derived in three distinct cells corresponding to the con-
tinuity equation (20), the axial momentum (18) and the radial
momentum (19) equations. The difference equations correspond-
ing to the heat conduction (21) and the convection–diffusion equa-
tion (22) have also been derived accordingly. The discretizations of
the time derivative terms are based on the first order accurate two-
level forward time differencing formula while those for the convec-
tive terms in the momentum equations are accorded with a hybrid
formula consisting of central differencing and second order
upwinding. The diffusive terms are, however, discretized by second
order accurate three-point central difference formula. Thus in a
finite-difference formula with x ¼ jdxj; z ¼ idzi; t ¼ ndt and
pðx; z; tÞ ¼ pðjdxj; idzi;ndtÞ ¼ pn

i;j in which n refers to the time direc-
tion, dt, the time increment and dzi; dxj are the respective width
and length of the ði; jÞth cell of the control volume. The discretized
version of the continuity equation (20) at the ði; jÞ cell becomes
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Fig. 2. A typical MAC cell.

Sarifuddin et al. / International Journal of Heat and Mass Transfer 52 (2009) 5719–5730 5723
Here, ðzi; xjÞ and ziþ1
2
; xjþ1

2
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represent the respective co-ordi-

nates >of the cell centre and the cell top right corner of the
ði; jÞth control volume (cf. Fig. 2). Considering the source, convec-
tive and diffusion terms at the nth time level, the momentum
equation in z-direction may be put to the form
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designate the pressure at the top and the

bottom positions of the right face of MAC cell, respectively, while
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consists of the convective, the diffusive and the viscous

dissipative terms of the w-momentum at the nth time level at
ði; jÞ cell, the expression of which is not presented for the sake of
brevity.

Likewise the finite-difference equation approximating the
momentum equation in x-direction is given by
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where ðumeÞni;jþ1
2

comprises of the convective, the diffusive and the
viscous dissipative terms of the u-momentum equation at the nth
time level at ði; jÞ cell.

The Poisson equation for pressure, derived from the Eqs. (31)–(33)
takes the final form as
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Here, Divn
i;j represents the discretized form of the divergence of

velocity-field at the ði; jÞ cell and the expressions for Ai;j;Bi;j; . . . ;

Hi;j; Si;j have got their respective expressions included in Appendix A.
The advantage in using MAC cell is that the pressure boundary

condition is not needed at the boundaries where the velocity vec-
tor is specified, because the domain boundaries are chosen to fall
on velocity nodes. The Poisson equation for pressure (34) is solved
by Successive Over Relaxation (SOR) method with the chosen value
of over relaxation parameter as 1.2. After having determined the
flow velocity-field using pressure duly obtained, the temperature
and the mass concentration can easily be evaluated from the fol-
lowing respective discretized versions of the Eqs. (21) and (22)
accompanied by the relevant boundary conditions (27)–(30) as
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and
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6. Pressure and velocity corrections

In most of the codes based on staggered grid formulations, the
local dilation term at the ðnþ 1Þth time level, Dilnþ1

i;j , is set equal
to zero. Here we replace the term

Dilnþ1
i;j ¼

xjRi
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where wn
i;jþ1

2
and wn

i;j�1
2

are at the nth time level, in order to obtain
the exact form of the transformed continuity equation in the
Poisson equation for pressure, so that the decoupled tendency of
pressure-field gets eliminated. With this incorporation, the pres-
sure equation becomes independent of ðnþ 1Þth time level veloc-
ity-field. For large number of grid points, very large number of
iteration steps is needed for satisfactory level of convergence. To
reduce the computation time for each cycle, the number of itera-
tions in the SOR iteration scheme is kept limited to 10. But the con-
vergence of pressure solutions cannot be expected with such a
small number of iterations. So the velocity-field obtained after
solving the momentum equations using an already known inaccu-
rate pressure-field may not satisfy the continuity equation. This
necessitates a corrector stage. In this stage the pressure and subse-
quently the velocities are corrected to get more improved values in
the sense that the velocity-field will satisfy the continuity equation
more accurately. The second stage starts with computing the diver-
gence of velocity-field for each cell. If the tolerance is found to be
greater than 0:5� 10�12 at any cell in absolute sense, the pressure
is immediately corrected for each cell in the flow-field. The velocity
components at the sides of the cell are then adjusted accordingly.
The pressure correction formula is
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pn
i;j ¼ pH

i;j þxdpi;j; ð37Þ

where pH

i;j is obtained after solving the Poisson equation, xð6 0:5Þ is
an under-relaxation parameter and

dpi;j ¼ �
DivH

i;j

dtAi;j
;

where DivH

i;j is the value of the divergence of velocity-field at the cell
ði; jÞ obtained after solving the Poisson equation for pressure. The
velocity correction formulae are consequently given by
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and uH
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2

represent the updated velocity-
field.

7. Numerical stability

Amsden and Harlow [32] suggested that the number of calcula-
tion cycles and hence the running time could be reduced by the use
of an adaptive time stepping routine which, at a given cycle, would
automatically choose the time step most appropriate to the veloc-
ity-field at that cycle. Welch et al. [33] discussed the stability and
accuracy requirements for the MAC method. They suggested that
two stability restrictions are required. The first is akin to the Cou-
rant condition which will only be appropriate for selected class of
problems. The second stability restriction involves the Reynolds
number:

dt1 6 Min
Re
2

dz2
i dx2

j

dz2
i þ dx2

j

" #
i;j

: ð38Þ

This stability condition is related to viscous effect (cf. Hirt [34])
which can be applied directly to select an appropriate time step.

A more appropriate treatment used by Markham and Proctor
[35], among others, is to require that no particles should cross
more than one cell boundary in a given time interval that is,

dt2 6 Min
dzi

jwj ;
dxj

juj

� �
i;j
: ð39Þ

We now discuss the implementation of this adaptive time-step-
ping procedure. The time step to be used at a given point in the cal-
culation will be

dt ¼ a Min½dt1; dt2�; ð40Þ

where 0 < a 6 1 ; the reason for this extra added factor a in (40) led
to a considerable computational savings as evident from [35] and
our experience concurs with them.
Table 1
Results of velocity for different grid sizes in a straight tube (Newtonian fluid model).

Grid Property x = 0 x = 0.19347 x

652� 50 w 1.0 0.9625369
Exact 1� x2 1.0 0.9625694

x = 0.22193 x

652� 40 w 1.0 0.9506867
Exact 1� x2 1.0 0.9507471
Moreover, the upwinding parameter b appearing in the expres-
sion of ðwmeÞniþ1

2;j
is selected according to the inequality

1 P b P Max
jwdtj
dzi

;
judtj
dxj

� �
i;j

:

This inequality yields a small value of the parameter b. As a
safety measure the value is multiplied by a factor 1.2, in practice.
8. Numerical results and discussion

Numerical computation of the desired quantities having major
physiological significance are primarily based upon the following
parameters obtained from [30,36]: a ¼ 2;Re ¼ 300; Pr ¼ 0:72;
Sc¼3;k¼0:1;k¼40;^¼50;ro¼0:154cm;q¼1:05�103 kg m�3 and
L¼43:6.

The computational domain has been confined with a finite non-
dimensional arterial length of 43.6 in which the upstream and
downstream lengths have been selected to be 8 and 15 times the
unconstricted non-dimensional radius, respectively. For this com-
putational domain, solutions are computed through the generation
of staggered grid with a size of 652� 50 while the insertion of
additional points whatsoever needed between any two consecu-
tive original irregular stenosis data of Back et al. [30] by interpola-
tion has been made for the purpose of generating finer mesh
adequately. The governing equations of motion are solved numer-
ically using the pressure based finite-difference approximation.
The grid-independence study is made for the verification of the
present numerical scheme. The w-velocity at different ordinates
in a straight tube at the outlet are compared with the exact solu-
tion at Reynolds number 300 as shown in Table 1. This shows good
agreement between exact values of w-velocity and the computa-
tional values of w-velocity obtained from different grid sizes for
a straight tube.

An extensive quantitative analysis has been performed for var-
ious physical quantities of major physiological relevance such as
the velocity profiles, the pressure drop, the patterns of stream
lines, the wall shear stress, the profiles of temperature distribution,
the mass concentration and the distribution of local Sherwood
number through each of the stenosis models together with their
detailed comparisons as well have also been made with the exist-
ing theoretical and experimental results.

The results of the predicted pressure drop across three different
stenosis models distributed over various severity of constrictions
in terms of percentage cross-sectional area reduction resulting in
mild, moderate and severe stenosis in the genesis of atherosclero-
sis are presented in Fig. 3 at the same instant of t ¼ 100 for
Re ¼ 300. The curves of this figure based on various types of con-
strictions corresponding to irregular, cosine and smooth stenosis
appear to follow the increasing trend gradually with increasing
percentage of area reduction, that means, more the severity of
the stenosis more the amount of pressure drop. One may record
from the present results that the pressure drop appears signifi-
cantly higher in the case of cosine shape of the stenosis and mod-
erately higher for smooth stenosis with respect to the irregular
= 0.42278 x = 0.61396 x = 0.80502 x = 1

0.8212349 0.6230387 0.3519528 0
0.8212571 0.6230531 0.3519428 0

= 0.40254 x = 0.61171 x = 0.80994

0.8379124 0.6257994 0.3440178 0
0.8379615 0.6258109 0.3439972 0



Fig. 3. Comparison of nondimensional pressure drop acros three different stenosis
models at t = 100.
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one. This happens due to the variance of the area covering of the
different models of the stenosis under consideration. It may be
noted that the respective area covering of 31.20% and 7.23% more
in the cosine and smooth stenosis with respect to the irregular one
helps enhancing the pressure drop. The present observation agrees
well with that of Yakhot et al. [37] that the excess pressure drop is
neither caused by the smoothness of the stenosis nor by its higher
degree of symmetry relative to the irregular stenosis but is rather
an effect of area covering with respect to the irregular stenosis
though their studies were based on Newtonian flow past a ste-
nosed artery. Here too, the influence of the non-Newtonian rheol-
ogy and parabolic inlet flow condition is well reflected on the
pressure drop in the case of irregular stenosis where the pressure
drop declines uniformly from that of non-Newtonian and parabolic
inlet one, as anticipated and eventually the velocity of the flow
diminishes as evident from Fig. 4.

Fig. 4 exhibits the variation of the axial velocity profiles of the
streaming blood along the radial direction for each of the stenosis
models with 48% area reduction at the throat of the stenosis indi-
cating a border line between moderate and severe stenosis at a
specific instant of t ¼ 100. It appears from the results of the pres-
ent figure that although the nature of the velocity profile corre-
sponding to three different stenoses remains analogous to some
extent but the velocity corresponding to irregular stenosis predicts
lower values than those of cosine and smooth ones until a radial
Fig. 4. Axial velocity profiles for each of the stenosis models with 48% area
reduction at the throat of the stenosis at t = 100.
position of 0.82 and beyond which, that is, in the vicinity of the
arterial wall they are considerably reversed. The deviation of the
results thus obtained indicates the relative quantitative measure
of the effects of different stenosis models on the velocity profiles.
It is obvious from the present figure that velocity profile becomes
more parabolic in case of Newtonian model. The present figure fur-
ther includes how the velocity profile in the case of irregular steno-
sis gets influenced by the parabolic inlet ðk ¼ 0Þ. The inclusion of
parabolic inlet condition instead of pulsatile one causes uniform
reduction of the velocity over the entire arterial cross-section at
the narrowest location. While most of the previous work have been
limited to steady flow only, the present study does incorporate the
effect of flow unsteadiness on the velocity profile and that can be
estimated quantitatively through a direct comparison of the sec-
ond and third curves from the bottom of the present figure. Since
there is a coupling between the growth of the stenosis and the
arterial flow of blood each affecting the other significantly and
since the development of arterial narrowing usually of varied geo-
metrical shapes, the choice of differently shaped stenosis models
considered herein underlines its own importance in the atheroscle-
rotic flow analysis.

The narrowest passage of all the outlines of the irregular, cosine,
smooth stenosis and the Newtonian fluid past irregular stenosis
and their implications on the flow velocity give rise to higher wall
shear stress in the converging regions of the stenosis, as depicted in
Fig. 5 corresponding to 64% area reduction for Re ¼ 300. Here, the
wall shear stress has been normalised by its magnitudes in the
unconstricted tube far upstream the stenosis. In the converging
section of the stenosis, the irregular stenosis model predicts lower
shear stress values from those of cosine and smooth stenosis mod-
els but at the throat of the stenosis, values are much higher fol-
lowed by a drop from higher shear stress to lower shear stress in
the diverging section of the stenosis. This observation of the nature
of the wall shear stress distribution over the entire arterial seg-
ment is quite consistent with the findings of Johnston and Kilpa-
trick [38], Andersson et al. [39] and Yakhot et al. [37]. The
present figure also records that there are three separation zones
for Newtonian fluid whereas no separation zones occur for general-
ized Newtonian rheology of fluid.

While the results of Fig. 6a at Re ¼ 300 represent the qualitative
measure of the effect of Womersley parameter on the temperature
profiles for a moderate irregular stenosis with 48% area reduction,
the profiles of Fig. 6b for exhibit how they are being influenced sig-
nificantly by the non-Newtonian rheology of the streaming blood.
Fig. 6c illustrates the behaviour of the temperature profiles under
Fig. 5. Variation of normalized wall shear stress through each of the stenosis
models with 64% area reduction.



Fig. 6a. Profiles of the temperature for irregular stenosis with k = 0.1% and 48% area
reduction at Re = 300. Fig. 6c. Profiles of the temperature based on stenosis-severity for irregular stenosis

with k = 0.1 and a = 2 at Re = 300.
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stenotic condition for irregular stenosis having severity ranging
from 48% to 75% occlusion for a ¼ 2 at the same Re. The effects
of non-Newtonian idealisation of blood and of the introduction of
the parabolic inlet flow on the temperature distribution over the
entire arterial segment are quantified in Fig. 6d for the same Re.
More intensively, the various temperature profiles corresponding
to different locations of the constricted artery are also explored
in Fig. 6e when the artery assumes 48% severity of the stenosis.
Examining the results of the present figures several observations
deserve attention from the physiological point of view and hence
can be recorded. As the pulsatile axial velocity produces a pulsating
temperature profile, Fig. 6a shows that although the curves do shift
towards the origin with increasing a for 0.0–2.0 but the profiles
shift away from the origin with increasing a for 3.0–5.0. The sizable
deviation of the temperature profile more towards the axis of the
artery may be noticed in Fig. 6b in order to estimate the quantita-
tive effect of generalized Newtonian characterization of the fluid
and the magnitudes of temperature get enhanced for generalized
Newtonian fluid over those of Newtonian one. The temperature ap-
pears to drop gradually from its maximum value for a straight tube
with increasing severity of the stenosis, that is, more the severity of
Fig. 6b. Profiles of the temperature for irregular stenosis with 48 % area reduction
for k = 0.1 and a = 2 at Re = 300.
the constriction less the temperature as evident from Fig. 6c. The
introduction of the parabolic inlet flow condition causes tempera-
ture to be largely distributed over the entire arterial segment than
that for a pulsatile one under consideration as evident from Fig. 6d.
Moreover, Fig. 6e represents the cross-sectional profiles of the tem-
perature distribution at various location of the stenosed arterial
segment for irregular model of the stenosis having 48% area reduc-
tion at the same Re ¼ 300. It appears from this figure that the anal-
ogous behaviour of the three consecutive curves at the bottom
represents the distribution of the temperature in the proximal of
the irregular stenosis. But the profile gets deviated downstream
the constriction, that is, in the diverging section ðz ¼ 25:02Þ of
the stenosis where back flow occurs and recirculation zones are
formed as noted earlier. At this critical location, the temperature
distribution profile appears to have a point of inflexion unlike oth-
ers while two remaining profiles at the top show the distribution of
temperature at the offset ðz ¼ 30:05Þ of the stenosis and at the exit
ðz ¼ 40:05Þ of the arterial segment. Of considerable interest in
studying the wall tissue thermal interactions is the convective heat
transfer at the exit of the arterial tube, which describes the amount
of energy carried out by the streaming blood that perfuses the tis-
sue. Examining all the results of the present figure one may note
that the centre lamina is greatly involved in the heat transfer
Fig. 6d. Temperature distribution profiles for irregular stenosis with 48% area
reduction at Re = 300.



Fig. 6e. Profiles of the temperature at various locations of the stenosed artery with
48% area reduction at Re = 300.

Fig. 7a. Distribution of local Sherwood number through each of the stenosis models
with 48% area reduction.

Fig. 7b. Distribution of local Sherwood number through each of the stenosis models
with 64% area reduction.
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mechanism and thermal equilibration with the arterial wall tissues
may be illustrated by the fact that the radial temperature profile at
the exit is relatively closer to the arterial wall temperature. The
present results appear to be consistent with those of Craciunescu
and Clegg [40] who also analyzed the effects of pulsatile blood flow
on temperature distribution and heat transfer in rigid vessels with
Newtonian fluid idealisation of blood.

For a more quantitative insight into the patterns of mass trans-
port in three different models of stenosis, the distributions of Sher-
wood number ðShDÞ over the entire stenosed arterial segment are
finally examined for two different severity of stenosis in Fig. 7a
and b. Generally, the mass flux to the arterial wall may be quanti-
fied through the Sherwood number defined by ShD ¼ nd

DDC, where n is
the local mass flux to the arterial wall, d the inlet diameter of the
artery and DC is a reference concentration difference, that is, the
difference between inlet concentration and the wall concentration.
The local mass flux ðnÞ has been computed by numerical differen-
tiation of the concentration gradient at the arterial wall. Both the
figures are also accompanied by the ShD distribution corresponding
to a straight tube free from any constriction in its lumen in order to
estimate the effect of constrictions of varied nature on the ShD

number, the key parameter in the mass transport phenomena.
One may observe from the features of these figures that the ShD

distributions right from the inlet section to the onset of stenosis
at ðz ¼ 10Þ are very well consistent with those of straight tube
but considerable deviations depending upon the different stenosis
models may be recorded with respect to constriction-free arterial
tube. The maximum mass transfer rate occurs slightly upstream
of the stenosis throat like the case of the peak wall shear stress
shown in Fig. 5. The enhancement of ShD or the occurrence of max-
imum shear stress in the constricted region causes damage of the
endothelial cells resulting the increasing permeability of the ste-
nosed wall where the mass particles dissolved in fluid representing
blood are deposited most. The minimum value of ShD is less than 1
occurring at the low velocity region downstream the constriction
and the Sherwood number keeps on increasing to approach finally
the distribution for a non-constricted artery. Again the present re-
sults do agree qualitatively well with those of Kaazempur-Mofrad
et al. [7]. The deviation of the results corresponding to the present
consideration of different models of stenosis clearly estimates the
influence of individual geometry of the stenosis on the mass flux to
the arterial wall. Also the severity of the stenosis causes the max-
imum and minimum values of ShD to change appreciably and the
deviation is larger with respect to non-stenotic artery when the
severity of the stenosis is allowed to increase in terms of increasing
percentage of the cross-sectional area reduction.

The cross-sectional profiles of the mass concentration corre-
sponding to different axial positions of the stenotic and non-
stenotic regions for irregular model of stenosis having area
reduction of 48% are displayed in Fig. 8 for Re ¼ 300. The general
observation is that the concentration patterns follow the outline
of the flow velocity as anticipated. It appears that the profiles get
distorted substantially downstream the throat of the stenosis
ðz ¼ 25:02;30:05Þ where flow separation zones are formed while
nearly parabolic profile is retained in the flow upstream. Along
the upstream side of the stenosis both the flow velocity and the
wall shear stress increase as the flow gets accelerated towards
the throat, there is a decreasing mass concentration of the solute.
These observations are generally consistent also with experimental
measurements of labeled cholesterol uptake in excised arterial seg-
ments conducted by Deng et al. [41]. All these results suggest be-
sides the role of wall shear stress, another possible role for mass
transfer effects in the enlargement of pre-existing arterial stenoses
and one may predict that stenoses should grow further distal to the
throat of the stenosis.

Finally, the concluding Fig. 9 shows the computed patterns of
streamlines through the arterial lumen having three different types
of stenosis with 75% area reduction at an instant of t ¼ 100. These



Fig. 8. Profiles of the mass concentration for irregular stenosis with 48% area
reduction.

5728 Sarifuddin et al. / International Journal of Heat and Mass Transfer 52 (2009) 5719–5730
patterns include flow separation downstream the constriction, that
is, just distal to the throat of the stenosis and the formation of
separation zones distal to the stenosis for Newtonian model. This
feature is well agreed with the observation of Stangeby and Either
[42]. The streamlines for irregular stenosis model appear to be
much more complex in terms of the formation of several recircula-
tion zones downstream the stenosis which may be justified that as
the flow approaches towards the throat of the constriction, the
axial flow streamlines curve appears to follow the outline of the
stenosed wall with the induction of a transverse pressure gradient
and a corresponding secondary flow. This causes the formation of
several flow separation zones in the diverging section of the steno-
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Fig. 9. Comparison of the patterns of streamlin
sis resulting in the appearance of complex recirculation zones on
the stenosed arterial wall and eventually the streamlines recover
normally much further downstream, distal to stenotic region. Thus
studying the distinctive features of the streamlines, one may note
that the irregular stenosis present in the arterial lumen affects the
streamlines most compared to the cosine stenosis model and
hence care needs to be exercised for the irregular stenosis model
leading to atherosclerotic lesion. The present findings are also in
good agreement with those of Kaazempur-Mofrad et al. [7] who
studied mass transport and fluid flow in both axisymmetric and
asymmetric stenosis models.

9. Concluding remarks

An updated arterial model based on both the heat and the mass
transfer to the streaming blood (non-Newtonian) past three differ-
ent types of stenosis (axisymmetric, asymmetric) in its lumen is
proposed in the current study. The arterial stenosis with 48%,
64% and 75% cross-sectional area reduction is represented by mild,
moderate and severe stenosis, respectively, occurring at different
stages of the development of atherosclerotic disease. This study re-
cords that the patterns of the flow, the heat and the mass transfer,
the pressure drop, the wall shear stress and the ShD number are
strongly dependent on the shape of the stenosis in addition to
the non-Newtonian rheology of blood in general, and the irregular
shape having closer physiological relevance, in particular.

Although there are some similarities between the models of the
stenosis regarding their responses to the heat and the mass trans-
port phenomena, there is a general tendency of the occurrence of
flow separation zones downstream of the stenosis, that is, of the
mass transport boundary layer to thicken at the specific site distal
to the throat of the stenosis. However, these models differ in their
both heat flow and mass transfer patterns in the immediate neigh-
75% severity at t = 100

b. Instantaneous patterns of streamlines for
irregular (parabolic inlet) stenosis with

d. Instantaneous patterns of streamlines for
cosine stenosis with 75% severity at t = 100
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es for different conditions and geometry.
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bourhood and distal to the stenosis. In the irregular stenosis model
featuring diseased artery in the realm of the genesis of atheroscle-
rosis, the emergence of downstream secondary flow features con-
tributed to circumferentially non-uniform mass concentration
profile and to the temperature profile that are different from those
in cosine and smooth stenosis models, the concept of the mecha-
nism of bioheat transfer is necessary to model the hyperthermia-
induced temperature distribution. The best exchange between
the living tissues and the blood network that passes through it de-
pends on the geometry of the blood vessel, the nature of blood flow
and the biomechanical properties of blood and the surrounding tis-
sues. The present temperature profiles distributed over the various
locations of the stenosed artery may have some implications in
hyperthermia in a way to initiate and help develop more accurate
models of ablative therapies and improve ablation procedures.

The key results of the present study indicate that the presence
of stenosis makes the diseased artery function in a direction which
is opposite to that of healthy normal one free from any constric-
tion. The occurrence of high wall shear stress and the maximum
Sherwood number at the throat of the stenosis in the formation
of atherosclerosis can imply more damage as plaque disruptions.
Moreover, the formation of several recirculation zones in the
downstream vicinity from the stenosis can allow the disease to de-
velop further creating new intimal thickening. Thus the combined
effect of heat and mass transfer on non-Newtonian idealisation of
the streaming blood indicates a gateway to draw linkage to
atherosclerosis.
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Appendix A

The expressions for Ai;j;Bi;j; . . . :;Hi;j; Si;j should be read, respec-
tively, as
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dz

� �
i�1

2
dzi�1dxj�1

4Ri�1
2
dxjdzi@zb@xb

þ
xjþ1

2

Ri@xtdxj

þ
xj�1

2

Ri@xbdxj
;

Bi;j ¼ �
xjRi

dzi@zt
þ

x2
j Ri

dR
dz

� �
iþ1

2
dzidxjþ1

4Riþ1
2
dxjdzi@zt@xt

�
x2

j Ri
dR
dz

� �
iþ1

2
dzidxj�1

4Riþ1
2
dxjdzi@zt@xb

;

Ci;j ¼ �
xjRi

dzi@zb
�

x2
j Ri

dR
dz

� �
i�1

2
dzidxjþ1

4Ri�1
2
dxjdzi@zb@xt

þ
x2

j Ri
dR
dz

� �
i�1

2
dzidxj�1

4Ri�1
2
dxjdzi@zb@xb

;

Di;j ¼
x2

j Ri
dR
dz

� �
iþ1

2
dziþ1

4Riþ1
2
dzi@zt@xt

�
x2

j Ri
dR
dz

� �
i�1

2
dzi�1

4Ri�1
2
dzi@zb@xt

�
xjþ1

2

Ri@xtdxj
;

Ei;j ¼ �
x2

j Ri
dR
dz

� �
iþ1

2
dziþ1

4Riþ1
2
dzi@zt@xb

þ
x2

j Ri
dR
dz

� �
i�1

2
dzi�1

4Ri�1
2
dzi@zb@xb

�
xj�1

2

Ri@xbdxj
;

Fi;j ¼
x2

j Ri
dR
dz

� �
iþ1

2

4Riþ1
2
@zt@xt

; Gi;j ¼ �
x2

j Ri
dR
dz

� �
iþ1

2

4Riþ1
2
@zt@xb

;

Hi;j ¼
x2

j Ri
dR
dz

� �
i�1

2

4Ri�1
2
@zb@xb

; and Si;j ¼ �
x2

j Ri
dR
dz

� �
i�1

2

4Ri�1
2
@zb@xt

;

where @zt¼0:5ðdziþdziþ1Þ;@zb¼0:5ðdziþdzi�1Þ;@xt¼0:5ðdxjþ dxjþ1Þ
and @xb¼0:5ðdxjþdxj�1Þ.
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